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a b s t r a c t

Freshwater aquatic systems in North America are being invaded by many different species, ranging from
fish, mollusks, cladocerans to various bacteria and viruses. These invasions have serious ecological and
economic impacts. Human activities such as recreational boating are an important pathway for dispersal.
Gravity models are used to quantify the dispersal effect of human activity. Gravity models currently used
in ecology are deterministic. This paper proposes the use of stochastic gravity models in ecology, which
provides new capabilities both in model building and in potential model applications. These models allow
us to use standard statistical inference tools such as maximum likelihood estimation and model selection
based on information criteria. To facilitate prediction, we use only those covariates that are easily available
from common data sources and can be forecasted in future. This is important for forecasting the spread of
invasive species in geographical and temporal domain. The proposed model is portable, that is it can be
used for estimating relative boater traffic and hence relative propagule pressure for the lakes not covered
by current boater surveys. This makes our results broadly applicable to various invasion prediction and
management models.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Biological invasions are widespread amongst freshwater aquatic
ecosystems. In North America, macroscopic invasive species cover a
broad range of phyla, from plants (e.g. Eurasian watermilfoil Myrio-
phyllum spicatum L., Cabomba caroliniana), exotic fish (e.g. Asian
carp) and invertebrates (e.g. zebra mussels Dreissena polymorpha,
spiny waterflea Bythotrephes longimanus). Added to these are the
microscopic invaders, including bacteria and viruses. The better-
known biological invaders have major ecological and economic
impacts on the ecosystems they encounter. These impacts include
interference with the feeding, growth, movement and reproduction
of native species, bioaccumulation of pollutants, and the fouling of
recreational and industrial facilities (Parker et al., 1999; Burbidge
and Manly, 2002; Lovell et al., 2006; Crowl et al., 2008).

In many systems, it is human activity that is the dominant fac-
tor governing transfer of invasive propagules. For example, with
zebra mussels and spiny waterfleas, the most important factor in
overland transportation from invaded to uninvaded lakes is tied
to recreational boats (Johnson and Padilla, 1996; Schneider et al.,
1998; MacIsaac et al., 2004). When a boat is used at an invaded lake,
invaders can attach to the boat, trailer or fishing equipment. If the
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boat or equipment is used at a different lake within a short enough
time, the invader may be released into a new lake. This may, in turn,
lead to the establishment of new invader populations in previously
uninvaded lakes.

Controlling the spread of invasion due to human transport
requires knowledge of the present invasion status and quantifi-
cation of spread rate. Intensive sampling effort has gone into
measuring the current distributions of some of the more notori-
ous invaders, such as zebra mussels and spiny water fleas (Kraft
et al., 2002; MacIsaac et al., 2004; Bobeldyk et al., 2005). Much
effort has also gone into assessing the propagule pressure (char-
acterized by rate of transfer of invasive propagules) from invaded
to uninvaded water bodies. To estimate it, one needs to know the
number of boaters traveling between the lakes or the boater flow.
For N lakes, assuming the flows symmetric, this requires estimating
N(N − 1)/2 parameters, and hence the proportional amount of data
about boater movement, that is detailed surveys.

Similar problem aroused long ago in economics and geography,
where it was necessary to estimate transport flows between the
cities. At present the common approach to it is the use of so-called
gravity models (Thomas and Huggett, 1980). In deterministic grav-
ity models, the propagule pressure is characterized by its mean
value �ij from location i (“origin” or “source”) to location j (“desti-
nation”). In turn, this mean propagule pressure is approximated
by product of three factors: �ij ∼ Ti × Wj × �(dij), where Ti is the
number of potential travelers at location i or “repulsiveness” of
the location; Wj is “attractivity” of location j; �(dij) is a “distance
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deterrence” factor, which describes the fact that short trips are
more frequent than long ones; dij is the distance between the source
and the destination (Thomas and Huggett, 1980; Sen and Smith,
1995). Ti and Wj depend on covariates characterizing source and
destination locations, respectively. Sometimes, when sources and
destinations possess similar characteristics, Tj and Wj may coin-
cide: in economics both may be proportional to population in the
locations. Then

�ij∼Wi × Wj × �(dij). (1)

The gain from using such model is quite obvious: the number of
parameters to be estimated from data become fewer. The name
“gravity model” appeared because the form of the first models
resembled Newton’s Law of Gravity, where city population played
the role of attracting mass, and �(d) = d−2.

Deterministic gravity models have been successfully applied
in invasion ecology for estimating propagule pressure of invaders
transported by the boaters into a lake (Baxter and Ewing, 1981;
Bossenbroek et al., 2001; Leung et al., 2004; Muirhead, 2007). Build-
ing a gravity models for recreational boater movement includes the
following steps:

1. Define the set of covariates determining attractivity and repul-
siveness terms in (1) and functional forms of the dependencies
for these covariates. We assume that the covariates and the dis-
tances are available, so only a few parameters in the model
remain unknown.

2. Obtain survey data on actual boater movement between sources
and destinations. The surveys provide the actual number of trav-
elers between the locations nij, or some data, from which nij may
be derived.

3. Obtain the model parameters by fitting the model to the data.
Different types of gravity models vary according to ways of fitting
the model parameter in (1) to the data nij.

For the step 1 a number of functional forms have been tested.
For example, the deterrence term is taken in the form of �(d) = d−ˇ

(Bossenbroek et al., 2001) or �(d) = exp (− ˇd) (Muirhead, 2007)
with ˇ unknown. Attractivity of a lake may be postulated as pro-
portional to lake area Ai as Wi = CiAi (Bossenbroek et al., 2001) or
to its logarithm (Muirhead, 2007). Step 2 is the hardest to do. Step
3 depends on the model type and will be discussed below in more
details.

In applications there are two important requirements for a grav-
ity model: accuracy and portability. Accuracy is achieved mainly in
step 1, by the choice of the model terms and parameters. Portability
means that one can add to the model sources and/or destinations,
not covered by the boater survey, without rebuilding the model. In
particular, portability allows one to fit a model to one set of lakes
and later apply it to another one. Portability of a model is impor-
tant for prediction and management of biological invasions, when
the number of invaded lakes changes in time, because surveys are
expensive and time-consuming.

It appears that not all existing types of gravity models are
portable. For example, to achieve better accuracy, source-specific
or destination-specific coefficients are introduced like in the above
example, Wi = CiAi. Then these coefficients are not available for new
locations, and the model loses portability towards sources, desti-
nations, or both. Therefore, portability requires a reduction of the
number of region-specific parameters to a minimum.

One more typical problem in deterministic gravity model fitting
to survey data is that for some lake pairs there may be only a few
boaters using it. If only a small part of boaters respond to a survey,
this may be true for most lake pairs. In such situation it may be
more reasonable to consider nij as a realization of an integer-valued
random process rather than an approximation to the mean boater

flow, and maximum likelihood fitting might be more natural than
least squares one.

To address all the mentioned problems, we have developed
a stochastic gravity model. Although such approaches have been
applied to economic gravity models (e.g. Flowerdew and Atkin,
1982) and there is some similarity with the way of gravity model
parameters fitting in (Ferrari et al., 2006), they are new to ecological
gravity models. We consider the boater movement as a Poisson pro-
cess with the intensity �ij, which has the form (1). The framework
of statistical model selection allows us to use maximum likelihood
approach to model fitting, to use information-based model selec-
tion criteria (Burnham and Anderson, 2002) for choosing the best
functional forms for lake attractivity and distance deterrence and
for choosing the best set of covariates determining them. There
is no need to confine their set only to lake area. Attractivity of a
lake potentially may depend on many lake covariates, e.g. perime-
ter, depth, availability of certain facilities, fish species living in a
lake and so on, and using model selection framework one can test
these hypotheses and determine the relevant ones, provided they
are known. Flexibility due to model selection capabilities enabled
us to build a portable gravity model without location-specific coef-
ficients, and its use in another modeling project confirmed its
efficiency in a new region. Finally, if more detailed surveys will
be available in the future, this approach may allow the researches
to study variability of propagule pressure, which may lead to more
advanced invasion risk models.

The gravity model developed in this paper was a part of bigger
project on analysis of risk of invasion of Ontario lakes by a zoo-
planktonic invader spiny waterflea B. longimanus (Yan et al., 2002),
which poses a serious threat for lake ecosystems (see e.g. Boudreau
and Yan, 2003). This invader quickly spreads between Ontario lakes
(MacIsaac et al., 2004), and therefore portability of a gravity model
for its propagule pressure is an important issue.

2. The general structure of gravity models: accuracy and
portability

Most of deterministic gravity models used for predicting recre-
ational boaters movement (Bossenbroek et al., 2001; Leung et al.,
2004; Keller et al., 2009) are the so-called constrained gravity
models (Thomas and Huggett, 1980). Here we briefly describe the
main idea of constraining and explain, why do we need a different
approach.

The idea of a doubly constrained gravity model is to ensure
good agreement between the model estimates �ij and actual data
nij by introducing fitting parameters and imposing constraints: at
each of NS source locations the total outflow in the model should
be equal to that for the data,

∑
j�ij =

∑
jnij, i = 1, ..., NS; similarly,

at each of ND destinations the total inflows have to be equal,∑
i�ij =

∑
inij, j = 1, ..., ND. To be able to satisfy the constraints, the

model must have at least NS + ND free parameters. The parameters
are introduced as NS factors for the source terms (CTi), and ND fac-
tors for the attractivity terms (CWj). The expression for the mean
flow becomes �ij = CTi × Ti × CWj × Wj × �(dij), formulas for obtain-
ing CTi and CWj can be found e.g. in Thomas and Huggett (1980).
At the same time, the dependencies of T, W, and �(d) on the loca-
tion covariates are fixed or contain only a few free parameters. For
example, (Bossenbroek et al., 2001) use T = {the number of boaters
in a county}, W = {lake area}, �(d) = d−˛, where ˛ to be fitted to data.
These remaining parameters are obtained by minimizing the total
squared error

∑
ij(�ij − nij)2 or Pearson statistic

∑
ij(�ij − nij)2/�ij.

Partially constrained models use fewer unknown factors and
constrain only outflows (production-constrained model) or only
inflows (attraction-constrained model). This significantly simpli-
fies expressions for CTi or CWj (Thomas and Huggett, 1980), though



Author's personal copy

966 A. Potapov et al. / Ecological Modelling 222 (2011) 964–972

at the cost of quality of approximation and model efficiency
(Muirhead, 2007).

In some cases the constrained gravity models are enough for
practical purposes. Muirhead (2007) has successfully used con-
strained gravity models to calculate Bythotrephes flow between the
lakes named in the survey. This model was a part of the bigger
model for predictions of Bythotrephes invasion risk. In this study,
propagule pressure, as estimated by a production constrained grav-
ity model, accounted for most of the inland lake invasions when
combined with data on habitat suitability and fish community com-
position (Muirhead and MacIsaac, submitted). This class of gravity
models has also successfully captured invasions for other species.
Similar production-constrained gravity models for zebra mussel
invasions have captured long-distance dispersal of zebra mussels
across the U.S. (Bossenbroek et al., 2007), and estimates of boater
traffic from these types of models correspond well with creel sur-
veys (Leung et al., 2006).

However, constraints impose a serious restriction on portability
of the model to a new region or just to ability to add new locations.
For production-constrained models one has to know CTi, and hence
it is impossible to introduce a new source without doing a new sur-
vey and rebuilding the model. New destinations, on the other hand,
can be added. Similarly, for attraction-constrained model one can
add new sources, but not destinations. Finally, doubly constrained
models do not allow any extensions. Modeling of invasion progress
typically require adding new sources, and considering different
region require adding new destinations, that is full model porta-
bility. In our studies we needed a portable gravity model that can
be fitted to data for the part of Ontario lakes covered by the boater
survey, and subsequently used for the lakes from a different part of
Ontario, where no survey data were available.

To achieve full portability, it is necessary to minimize the num-
ber of model parameters that are uniquely related to a certain lake
or the whole region. Attractivity of a location W must have the
same functional form for all locations, and dependence on the spe-
cific location must appear only through covariates characterizing
it. For example, the relation Wi = A˛

i
exp(ˇAi) where ˛ and ˇ are

the same for all locations is portable, while Wi = A�i
i

with different
� i for each location is not. We may assume that parameters ˛ and ˇ
reflect some patterns of boater decision-making, and hence may be
used at a different place. Parameters � i also may reflect the same
patterns, but they are not defined outside the survey region.

At the same time, at least one parameter cannot be transferred
to other region: all estimated �ij must be proportional to the total
number of travelers in a system. Some models satisfy explicit con-
straint

∑
ij�ij =

∑
ijnij or an equivalent one, or it may implicitly

emerge from data fitting. In another region the total number of
travelers is different, and hence the common factor should change.
However, a portable model in a new region should be able to
provide relative intensities of transport flows, and hence relative
invasion risks. This may be valuable information for prediction and
management of invasions.

Therefore, a natural strategy to build a portable model is to
increase the number of common fitting parameters in attractivity
and deterrence terms, and to reduce the region-dependent param-
eters to a common factor only, that is

�ij = C × Wi(covariatesi, parametersW )

×Wj(covariatesj, parametersW ) × �(dij, parameters�) (2)

Parameters may be fitted by standard least squares methods, as
with other deterministic models. The number of parameters has to
be sufficiently large to ensure good fitting properties. However, this
raises a problem of model selection: what is the reasonable number
of parameters that describes the transportation mechanism, but

does not entail overfitting. Within deterministic framework this
question cannot be easily answered. In principle, one can consider
least square fitting as likelihood maximization with a special form
of likelihood function ∼

∏
ij exp(−error2

ij
). This formally allows one

to apply statistical model selection criteria, such as AIC. However,
such an introduction of stochasticity is artificial.

More natural approach is to develop a stochastic gravity model
and to apply information-based model selection criteria. In eco-
nomical applications there are examples of stochastic gravity
models (e.g. Flowerdew and Atkin, 1982; Sen and Smith, 1995).
We decided to develop a portable stochastic gravity model suitable
for ecological applications.

3. Stochastic gravity model and inference

3.1. The boater flow as a Poisson process

We assume that individual boaters randomly decide to visit a
certain pair of lakes, but probability of this decision depends on the
lake characteristics. The total number of boaters using lakes i and
j, nij we describe by a Poisson distributed random variable,

nij∼Poisson(�ij),

We will apply gravity model of the form (2) for �ij, the mean num-
ber of boaters visiting one of the lakes after visiting another. As we
have mentioned before, the results of the survey contain only the
list of lakes visited by each boater, and therefore they do not dis-
tinguish nij and nji. We shall assume that nij = nji. This means that
our formulas have to be symmetric in i and j.

As we have said above, in ecological applications it has been
assumed that lake attractivity is determined by area of the lake,
though the form of the dependency may be different. The same is
true for the deterrence function. Most of the forms previously used
can be combined in a single expression as follows,

Wi = exp
(

a1 ln Ai + a2 ln ln Ai + a3Ai

Amax

)
= Aa1

i (ln Ai)
a2 exp

(
a3Ai

Amax

)
, (3)

�(d) = exp
(

a4 ln d + a5d

dmax

)
= da4 exp

(
a5d

dmax

)
. (4)

Similarly, one can add dependence on perimeter and any other
available lake and region characteristics. Eventually this brings us
to the framework of Poisson generalized linear models (GLM) with

�ij = exp(a0 +
∑

akxijk), (5)

where ak to be fitted to data nij, and xijk represent either ln dij,
or dij/dmax, or a symmetric combinations of lake parameters like
ln Ai + ln Aj or (Pi + Pj)/Pmax (see Appendix A for an example of the
derivation). We normalize distances, areas and perimeters to their
maximum values to avoid situations when meaningful values of
coefficients ak may be too small. The maximum likelihood fitting of
such GLM models is a well-elaborated procedure that can imple-
mented in R (Crawley, 2007).

3.2. Available covariates for the stochastic model

The covariates for a gravity model should reflect lake properties
important for a traveler: convenience for boat launching and using,
fishing, living, and so on. It is accepted that lake area is the most
important covariate, though there may be others. Here we present
the list of all characteristics we have tried. Others may be important
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as well and potentially may be used for gravity model improvement
when available.

3.2.1. Primary covariates
Lake parameters:

• Lake area Ai.
• Lake perimeter Pi.
• Lake coordinates, UTM easting and northing or longitude and

latitude.
• Distance between two lakes dij. We have used distances along the

roads and Euclidean distances between lake centroids. The results
were practically indistinguishable. Since Euclidean distances are
easier to obtain, we shall consider them as distance data.

• Elevation of lake surface above sea level.

Population data:

• 2006 population census data from Stats Canada for Ontario for-
ward sortation areas (FSA2), corresponding to first two letters of
the postal code, Popk. We assume that the number of boaters in
a certain region is proportional to the population of this region.

• Coordinates for the centroids of FSA2 and distances from kth area
to ith lake, lki.

3.2.2. Derived covariates
Our first experiments in fitting gravity models provided a num-

ber of covariate combinations that are statistically important but
seem senseless from mechanistic point of view (see Section 5 for
motivation and more details). Instead, it is more reasonable to use
meaningful combinations of primary covariates as listed below.

• Normalized area AN: According to our results, lake attractivity
saturates for large lakes, and better attractivity measure is

ANi = Ai

1 + Ai/A0
= A0Ai

Ai + A0
, A0 ≈ 3200 km2. (6)

• Effective estimate of the number of boaters that may be attracted
to a lake or boater “pressure”. We used a secondary gravity model
to estimate boater pressure for lake i as

bi = Cb

∑
k over all FSA2 areas

Popk × �(lki), (7)

where �(l) is a distance deterrence function and Cb is a normal-
ization constant.

• “Fitted perimeter” PFi. If we try to fit a linear model
for the dependency of lake perimeter on lake area as
log10 Pi = c0 + c1 log10 Ai + εi, c1 = 0.60 ± 0.02, this gives the
expression for fitted perimeter:

PFi ≈ 10c0 Ac1
i . (8)

3.3. Statistical inference

3.3.1. Likelihood and parameter estimates
According to the form of our model, the log-likelihood function

for the survey data is

l(�) =
∑

ij
ln

(
�nij

ij

nij!
exp(−�ij)

)
=

∑
ij
(nij ln(�ij) − �ij − ln(nij!)),

(9)

where �ij is defined by equation (5) and � denotes the set of covari-
ates used in the model. For the fixed model structure we obtained
ML estimates of the parameters and characterized model perfor-
mance by AIC, BIC and cross-validation. Different sets of covariates
were compared with the help of model selection criteria.

Whenever possible, we used R function glm for model fitting and
parameter estimates (Crawley, 2007; R Development Core Team,
2009). Otherwise we used R routine optim for likelihood maxi-
mization.

3.3.2. On model selection criteria
At present most popular model selection criteria seem to be AIC

and BIC (Burnham and Anderson, 2001, 2004; Ghosh and Samanta,
2001). Their performance has been analyzed by several authors in
numerical experiments. In particular, it has been noted that there
are two classes of problems: building the best predictor for the
observed data and “discovering the truth” (Ghosh and Samanta,
2001), that is building a model that best reflects the structure of the
original system which generated the data. It has been hypothesized
that AIC is better for the former task while BIC is better for the latter.
In Burnham and Anderson (2004), this observation has been stated
differently: BIC is better for detecting simple true models while AIC
is good when the true model is complicated. As we had already said
in the beginning, our major task was to make a “portable” model
that can be calibrated for one set of lakes and then used for the other.
A simpler model has a better chance to satisfy our requirements,
and hence such problem should be closer to “discovering the truth”.
This makes BIC the main candidate for model selection tool.

Burnham and Anderson (2001) note that the model with smaller
AIC should not automatically be accepted as the best: AIC decrease
by ∼2 in practice often does not mean real improvement. Doubtless
improvement requires �AIC ≥ 8. Unfortunately, the authors did not
specify, for what data set size their recommendations have been
tested, and should they be adjusted with the size of the data set or
not. From the expression for BIC = − 2 ln L + k ln n and our data set
size of n = 13,790 lake pairs with ln n ≈ 9.5 it means that for formally
better model with �BIC > 0 implies �AIC > 7.5. Applying Burnham
and Anderson’s idea to our case, we can say that if �AIC ∼ 10 or
�BIC ∼ 1, then acceptance of a more complicated model is not auto-
matic and may be debatable. Below we apply these selection criteria
and accompany it with the estimates of residual sum of squares
RSS =

∑
ij(nij − �ij)2.

Similarly, when we compare the models with the same number
of variables, we choose one with the smallest BIC, and hence AIC.
However, there may be other variable combinations giving models
with only slightly higher BIC. We shall call such models “potential
competitors”. If the BIC difference between competing models is
small, with �BIC ∼ 10, a possible explanation may be that there are
correlations among the used covariates, and the true model must
contain less covariates. For definiteness, we consider as potential
competitors models with BIC difference less than 30.

3.3.3. Cross-validation
For validation purposes we applied the approach resembling

“leave k out” algorithm. To keep the amount of computations
reasonable we have taken k equal to 10% of the data. The brief
description of the algorithm is as follows. (a) We randomly split the
data set into 10 groups. (b) We exclude one group, fit the model
to the remaining data, and then calculate log-likelihood and RSS
for the excluded part. (c) This is repeated for each of 10 groups,
then all likelihoods and RSS are added up to form the validated log-
likelihood, RSS, AIC and BIC. (d) Calculations are repeated for 10
different data set groupings, and we calculated the mean validated
AIC, BIC and RSS.

Validated BIC and RSS were used to verify BIC and RSS obtained
during model fitting.

4. Data for fitting the gravity model

Our data came from existing surveys (Muirhead, 2007) within
one of the mentioned above projects on Bythotrephes invasions in
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Fig. 1. Ontario lakes covered by J. Muirhead’s survey and used for creating our stochastic gravity model.

Ontario. The data for patterns of recreational travel were collected
by the surveys. The surveys consisted of 17 questions designed
to assess the risk of transporting aquatic invasive species during
recreational boating and fishing. At the basic level, trip informa-
tion was collected on lakes that were visited previously, including
whether recreational boaters visited lakes known to be invaded by
Bythotrephes, and the maximum distance they trailed a boat after
leaving one of these lakes.

In July 2004 10,000 surveys were sent to owners of fishing
licenses registered with the Ontario Ministry of Natural Resources
(OMNR). 741 answers were received, and 394 of the responded
owners kept their boat at a single lake and did not move to the
others. Boaters who travel with the boat have provided lists of
the lakes that they visited during their trips. We assume that trips
between all lakes in each list are likely. Based on survey results,
boaters visited 55 invaded (source) and 273 uninvaded (destina-
tion) lakes, Fig. 1. For this set of lakes there was the table of road
distances between source and destination lakes. Due to invasion
history, 49 out of 55 lakes were treated as both sources and des-
tinations, that is were present in both categories. This leaves only
13,790 unique distances in the table. The remaining 24,991 pairs of
destination–destination and source–source lake pairs were of no
interest from invasion point of view, there were no road distance
data for them, and we did not consider these pairs. Therefore we
have considered 13,790 lake pairs assuming symmetrical boater
movement between these lakes, which provides sufficient amount
of data for studying boater movement. Processing of the survey
data gave us the values of the observed number of travelers nij for
13,790 lake pairs. Only 787 of the lake pairs were used by at least

one boater (nij > 0), and only 34 of them were used by more than 4
boaters. The most popular pair of lakes was used by 17 boaters.

Geospatial data for each lake was provided by the OMNR
through the Ontario Geospatial Data Exchange. In addition to lati-
tude and longitude of the lake centroid, data on lake area (in km2)
and perimeter (km) were extracted through ArcGIS software (v 9.1,
ESRI). Road distance between lake pairs (dij) was calculated based
on the minimum distance between lake centroids.

5. A Hitch-Hiker’s guide to fitting stochastic gravity models

5.1. Best model using only basic lake characteristics available
from GIS data

Building a gravity model for Ontario lakes we have started with
search for the best functional form for a model using the most pop-
ular and basic lake characteristics: areas A and distances between
the lakes d. Lake perimeter P has never been used before, but it is as
basic characteristic as area, and we have added it as well. Distances
between the lakes can be estimated in two ways: as a path along
the roads and as Euclidean distance between lake centers. The first
way is more accurate but requires information about roads as well,
while the second one requires only knowledge of the lake coor-
dinates. For a part of lake pairs we had road distances, obtained
in Muirhead (2007), and in likelihood estimates we used only this
subset of lake pairs to compare results for both types of distances.
The results were practically identical, in most cases the relative dif-
ference in AIC or BIC was less than 10−4. To save space and simplify
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Table 1
Variable selection for Poisson generalized linear model (5) with the number of covariates xkij in the sum varying from 0 to 7. For each number of variables the model with
the minimum BIC value has been selected. The corresponding AIC, BIC, and RSS values and the values of the coefficients ak in the sum are shown in respective columns. The
potentially competing models are those with BIC not exceeding the best BIC + 30. The best 3-covariate model is chosen as a result of model selection (bold).

# of varia-bles Best BIC AIC RSS ak other models

ln dij dij/dmax ln A lnln A A/Amax ln P P/Pmax # of competing
models

Next
Best
AIC

Next
Best
BIC

0 9572 9564 3915 0
1 7559 7544 3393 0.30 0 7578 7593
2 6144 6121 2466 −1.17 0.42 0 6320 6343
3 5924 5894 2097 −1.19 0.53 −2.0 0 6049 6079
4 5920 5883 2060 −1.18 0.56 −1.9 −0.4 5 5886 5924
5 5915 5870 2114 −1.19 0.66 −0.37 −2.2 −0.6 8 5879 5924
6 5909 5856 2101 −1.19 0.66 −0.61 −2.0 0.17 −1.1 4 5867 5920
7 5914 5854 2087 −1.12 −0.7 0.66 −0.60 −2.0 0.17 −1.0 0

the description of the results, below we present only those for the
distances between lake centers.

Since we had no a priori information, what should be the model
dependence on A, P, and d, we used three functional forms for area,
as in (3), and two functional forms for both distance and perimeter,
as in (4). This gives 7 potential GLM covariates xkij in (5), named in
Table 1. We tried all possible combinations of these covariates, that
is 128 = 27 different models. We split them in 8 groups, according
to the number of covariates used, and within each group we have
selected the model with the minimum BIC.

The results of model selection are presented in Table 1. It shows,
that up to 3 covariates there is significant decrease of BIC of 200
and more. Starting with 4 variables the BIC decreases only by val-
ues ∼1, and the model form becomes less and less interpretable
mechanistically. For this reason we selected the 3-covariate model
with minimum BIC as the best one, which was

�ij = C(AiAj)
� d−ˇ

ij
exp

(
−2

Ai + Aj

Amax

)
, � = 0.53, ˇ = 1.19. (10)

This function is in good agreement with the ideas of gravity models,
except for the exponential term. It corresponds to lake attractivity
of the form Wi∼A�

i
exp(−2Ai/Amax), which shows, that lake attrac-

tivity attains its maximum for A = 0.26Amax, and then decreases.
This conclusion contradicts our understanding of attractivity mech-
anism. We suggest the following interpretation of the exponential
term: lake attractiveness increases only up to a certain lake size and
does not grow further. Very big and huge lakes have almost equal
attractivity. Exponential term is the best possible approximation of
this dependence within our set of models.

To verify this hypothesis, we introduced normalized lake area AN

(6), such that for a very big lake normalized area tends to its maxi-
mum value A0. To determine A0, we did maximum likelihood fit to
the 4-parameter model �ij = C(ANiANj)

� d−ˇ
ij

. The resulting estimate

of the limiting area is A0 ≈ 3200 km2. After that we have repeated
the variable selection procedure replacing Ai with ANi, and the best
model is

�ij = C(ANiANj)
� d−ˇ

ij
, � = 0.58, ˇ = 1.18. (11)

It has almost the same BIC as (7), 5925 vs 5924, but an easy and
transparent interpretation.

The cross-validation technique provided very close values of val-
idated AIC/BIC to those given in Table 1 or cited above. For example,
for model (11) the verified mean BIC was 5938. What is important,
the ordering of the validated BIC values was the same as for stan-
dard BIC, and hence they led to the same conclusion. This was true
for the cases below as well.

Therefore, model (11) is the best one using only basic lake
parameters.

5.2. Model improvement with additional covariates

One can assume that lake attractivity for boaters may be
related not only with lake area, but with some other char-
acteristics as well. To check this, we have enhanced model
(11) with more covariates available (see Section 3.2): geo-
graphic coordinates and elevation. Model selection procedure
has shown that there was only one significant effect: use
of latitude as a covariate decreases BIC from 5925 down to
5757. The only reasonable interpretation is that it is related
with proximity of the lakes to the boater’s residence. There-
fore, model improvement requires knowledge of the boater
home locations. We assumed that the number of boaters in a
region is proportional to total population of the region. Infor-
mation about population is available in 2006 census, and to
describe potential number of visitors to a certain lake we have
used the secondary gravity model (7), which uses coordinates
for both lakes and FSA domains. For its distance deterrence
function we used the same type of dependence as in (11),
�(lki) = l−	

ki
. Since ˇ is very close to 1, in test calculations we

use 	 = 1.
The model (7) provides value proportional to potential number

of visitors to lake i, bi. Denoting lake attractivity by Wi, we may
assume that the number of visitors to lake i is ∼Wibi, and the num-
ber of those who decide to visit lake j later that is ∼WibiWj. Similarly
the number of visitors to lake j, who decide to go to lake i is ∼WjbjWi.
Therefore one can expect that �ij ∼ WiWj(bi + bj). We repeated the
model selection procedure with elevation, coordinates, and one
more covariate bAij = bi + bj. The best was a 3-variable model with
BIC = 5675 and cross-validated BIC = 5687:

�ij = C(ANiANj)
� d−ˇ

ij
(bi + bj)

˛, � = 0.58, ˇ = 1.01, ˛ = 1.36.

(12)

Lake coordinates were not significant covariates any longer.

5.3. Final result: interpretation

Mechanistic interpretation of model terms is always an asset.
Typically it is easier when the value that appears in the model has
a simple dimension. It would be easy to interpret if the following
would be true: (a) � = 0.5, then A� has the dimension of length and
may represent lake radius or perimeter. (b) ˇ = 	 = 1, then there is
just inverse proportionality for distance. (c) ˛ = 1, then the number
of travelers is proportional to the total population size. Otherwise,
if the population increases, say, two times, the number of travelers
should increase 21.36 ≈ 2.57 times.

For this reason we have compared models that contain mean
lake radius R =

√
A/2
 normalized by R0 =

√
A0/2
 and some of
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Table 2
Testing hypotheses about model parameters. We fix part of the model coefficients according to the tested hypothesis and calculate the difference of the BIC for the tested
model and the model (12) (row 4 here). The results show that hypothesis that 	 = ˇ = 1 agrees with the data. The corresponding model (row 6) is reported as the best one, see
(13). This model has the minimum AIC as well.

# Model �ij Fixed coefficients Fitted coefficients AIC BIC �BIC

1 CRNiRNjd
−1
ij

(bi + bj) 	 = 1, ˇ = 1, ˛ = 1 5735 5743 68

2 CRNiRNjd
−ˇ
ij

(bi + bj) 	 = 1, ˛ = 1 ˇ = 0.933 ± 0.026 5730 5745 70

3 C(ANiANj)
� d−ˇ

ij
(bi + bj) 	 = 1, ˛ = 1 ˇ = 1.05 ± 0.03 5659 5682 7

� = 0.59 ± 0.01

4 C(ANiANj)
� d−ˇ

ij
(bi + bj)

˛ 	 = 1 ˛ = 1.36 ± 0.09 5645 5675 0
ˇ = 1.01 ± 0.03
� = 0.58 ± 0.01

5 C(ANiANj)
� d−ˇ

ij
(bi + bj)

˛ ˛ = 1.91 ± 0.03 5645 5683 8
ˇ = 0.99 ± 0.04
� = 0.58 ± 0.01
	 = 0.74 ± 0.20

6 C(ANiANj)
� d−1

ij
(bi + bj)

˛ 	 = 1, ˇ = 1 ˛ = 1.37 ± 0.09 5643 5663 −12
� = 0.58 ± 0.01

the parameters fixed. The results are shown in Table 2. They allow
us to make the following conclusions.

(1) Using mean lake radius provides significantly worse results,
therefore � /= 0.5.

(2) The hypothesis ˇ = 	 = 1 is consistent with the data and so attrac-
tivity of lake pairs scales with inverse distance.

(3) Setting ˛ = 1 gives increase of BIC about 6, which does not allow
us to completely reject the hypothesis that the number of trav-
elers is proportional to population size.

For the value of � we can suggest the following explanation. It
is very close to the value c1 in (8), where lake perimeter is fitted
to area. Therefore, we may assume that lake attractivity is propor-
tional to the estimated or expected lake perimeter: the value that
one may expect from glancing at the map. If this is true, then � is
related with a psychological effect, and the best way to estimate
attractivity is through the area, not actual perimeter.

Eventually we come to the best model

�ij = C(ANiANj)
� d−1

ij
(bi + bj)

˛, ˛ = 1.37 ± 0.09,

� = 0.58 ± 0.01, 	 = 1. (13)

6. Discussion

The stochastic gravity models approach provides a number of
benefits to the technical side of model building. It can be easily
extended if additional covariates appear, and it may allow for more
general modeling approaches with new research and management
goals.

From the technical side, most important features are more real-
istic data fitting for rarely used lake pairs and applicability of
information-based model selection criteria for choosing the opti-
mal set of covariates and functional forms for them. These features
allowed us to build a portable gravity model. Portability may be
an important property of gravity models, and not all models pos-
sess it, due to data requirements and constraints under which the
gravity models are parameterized. For example, the most highly
constrained type of gravity model, the doubly-constrained gravity
model, requires data on both outflows from invaded sources and
inflows into invaded and noninvaded destinations to parameter-
ize the model (Haynes and Fotheringham, 1984). Portability is thus
limited, as the pairwise number of trips between lakes i and j must

be re-calculated as new lakes are added to the data set. Uncon-
strained (this study) and production-constrained gravity models,
on the other hand, are well suited for invasion risk management
where propagule pressure estimates to each lake j,

∑
i�ij, can be

easily recalculated for lakes not covered by previous surveys. In
production-constrained gravity models, the sum of pairwise trips
for each source lake i must equal to data on the observed number of
trips leaving each source, but pairwise trips to lakes from different
data sources requires data on only measures of attraction, such as
lake area (e.g. Siderelis and Moore, 1998; Leung et al., 2006) and
distance between source and destination lakes.

In the final relation for the stochastic gravity model (13) we do
not present the value of the factor C. Likelihood maximization with
respect to it (or a0 in (5)) results in the constraint on the total num-
ber of trips:

∑
ij�ij =

∑
ijnij, and this equality defines C. Therefore,

absolute values of �ij are still tied to the survey region and survey
data. However, it is natural to assume that other coefficients, ˛, ˇ,
� , 	, and consequently the relative �ij values are associated with
the principles of boater’s decision making, and hence can be used
at other regions where the boaters behavior is expected to be sim-
ilar. In some cases the unknown constant C can be estimated for
the new region through the total number of boaters. In other cases,
e.g. in fitting a binary classifier to presence/absence data, � is used
with a factor to be fitted, and hence the value of C is not important.
In other words, the gravity model (13) appears to be portable from
one region to another.

Stochastic gravity models, fitted by maximum likelihood
estimation, have some advantages over their deterministic coun-
terparts because it becomes possible to test hypotheses concerning
additional covariates to �ij and to simplify the functional form of
the model if the covariates are not significantly different from zero.
In our final model (13), the number of boat trips arriving at a lake
depends on the population density of recreationalists surrounding
the lakes (FSA2) and the distance of these population centers to
each of the lakes. Although data was not available on the absolute
numbers of recreationalists that travel from specified regions (e.g.
Bossenbroek et al., 2001), here we are assuming that the propor-
tion of the population that trailers boats is the same across the FSA
zones.

When an invader spreads beyond the areas covered by surveys,
portable gravity models can be applied there. We are now using
the model developed in this paper to determine the most impor-
tant covariates for lake invasibility by Bythotrephes (Potapov et al.,
submitted for publication) in 306 lakes not included in Muirhead’s
2004 survey (Section 4). Using the relative mean boater flows (13),
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we have calculated total relative inflows of propagules into each
lake, which appeared to be significantly better single predictor of
invasions than the next best one, lake pH, with �AIC = 13.

The stochastic gravity model approach can be easily extended
if more covariates are available for the lakes covered by survey.
Covariates influencing lake attractivity may include the presence of
game fish species in the lake, water clarity, accessibility of the lake,
as well as a suite of socio-economic factors. Interpretation of these
factors in terms of perceived attractiveness is not always straight-
forward, however. Similar to other gravity models of recreational
boater movement (Bossenbroek et al., 2001; Leung et al., 2006), we
used lake area as a measure of lake attractivity. Lake area may also
be confounded as a primary measure of attractiveness since area is
also correlated with highly desired attributes such as the number
of boat launches and availability of support facilities (Siderelis and
Christos, 1998).

The approach may be also extended by adding submodels
of individual-decision making process such as a Random Utility
Model. The probability of choosing one destination over another is
weighted by the cost to travel to those lakes, which is then nested
as input into the gravity model (Siderelis and Moore, 1998).

Although the number of boater trips between lakes was used as a
measure of propagule pressure in this study, data may be collected
from field experiments on actual number of invasive propagules
per trip. Propagule loads may be quantified for vectors associated
with recreational boating such as the number of individual propag-
ules collected from contaminated fishing lines, bait buckets, bilge
water, etc. Statistical techniques such as likelihood ratio testing
may be used to test the significance or relative importance of each
vector in the transportation pathway of recreational traffic. Such
an approach would correspond with the EPPO’s (2007) recommen-
dations to assess (1) the ease at which invasive propagules may be
detected within specific vectors, (2) what is the distribution pattern
of the vector with respect to destinations.

The stochastic gravity model approach may also be extended
by trying other statistical distributions beyond the Poisson for the
number of trips from one lake to another. As a result, statistical
techniques may improve quality of gravity models in ecology. This
is an area of ongoing research.

Stochastic gravity models may allow to set up new model-
ing problems as well. Given that the mean number of boater
flows between lakes follows a statistical distribution and maximum
likelihood model fitting requires casting a gravity model in a prob-
ability mass function, a series of probability-based management
scenarios may be explored. Such a framework has been recom-
mended frequently for invasive species management (Maguire,
2004). For example, a scenario may ask: given an expected
mean number of boat trips between lakes from the model, what
is the probability of observing at least one trip between spe-
cific invaded and non-invaded lakes. For invasive species that
reproduce clonally such as zooplankton (e.g. Bythotrephes) or by
vegetative fragmentation (e.g. Eurasian watermilfoil, M. spicatum),
small inocula size may be sufficient to establish a population
providing environmental conditions are suitable (Drake et al.,
2006). The number of individuals of sexually-reproducing species
required to establish a population, however, is likely 2–3 times
higher in order of magnitude, with many more required for popu-
lations that experience Allee effects due to low mate densities and
to withstand environmental variability (Leung et al., 2004; Lodge
et al., 2006).

Stochastic gravity models can provide both estimates of the
boat traffic and information about its uncertainty arising from
stochastic nature of the process errors in estimated model param-
eters. Availability of traffic estimates allows managers to assess the
invasion risks and to make decisions, for example, about location
and number of boater treatment stations, education postersm, etc.

Uncertainty of predictions also may be important for better choice
of management decisions (Regan et al., 2005; Cooney and Lang,
2007).

In this paper we have proposed to use stochastic gravity models
for modeling movement of boaters, and have developed an example
of such a model based upon J. Muirhead 2004 survey. This approach
naturally integrates randomness and uncertainty, and uses statisti-
cal model selection instead of constraints to improve the prediction
accuracy. We hope that our model may be useful in further ecologi-
cal studies and management applications. At the same time, there is
a lot of room for model improvement in the statistical framework.
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Appendix A. An example of GLM form of stochastic gravity
model

Let the attractivities Wi and Wj have the form (3), distance deter-
rence function �(d) has the form (4), and we are building a gravity
model of the form (2). Then taking logarithm of � we obtain

ln �ij = ln C + ln Wi + ln Wj + ln �(dij).

Denoting a0 = ln C and substituting (3) and (4), we have

ln �ij = a0 +
(

a1 ln Ai + a2 ln ln Ai + a3Ai

Amax

)
+

(
a1 ln Aj + a2 ln ln Aj + a3Aj

Amax

)
+

(
a4 ln dij + a5dij

dmax

)
= a0 + a1(ln Ai + ln Aj) + a2(ln ln Ai + ln ln Aj)

+a3

(
Ai

Amax
+ Aj

Amax

)
+ a4(ln dij) + a5

(
dij

dmax

)
.

Now let us denote

x1ij = ln Ai + ln Aj, x2ij = ln ln Ai + ln ln Aj,

x3ij = Ai

Amax
+ Aj

Amax
, x4ij = ln dij, x5ij = dij

dmax
.

In this notation

ln �ij = a0 + a1x1ij + a2x2ij + a3x3ij + a4x4ij + a5x5ij,

or

�ij = exp(a0 + a1x1ij + a2x2ij + a3x3ij + a4x4ij + a5x5ij).

This is the expression for Generalized Linear Model (GLM), Eq.
(5). Therefore, representing the values of the lake covariates as their
symmetric combinations xkij allows us to apply standard R routine
glm for fitting a stochastic gravity model to survey data.
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